Why is controlled impedance so important

Posted by

Understanding Impedance

Before exploring the significance of Controlled Impedance, it is essential to grasp the concept of impedance itself. Impedance is a measure of the opposition that an electrical circuit presents to the flow of current when a voltage is applied. It is a complex quantity that consists of both resistance and reactance, and is measured in ohms (Ω).

In a direct current (DC) circuit, impedance is equivalent to resistance, as the frequency is zero. However, in alternating current (AC) circuits, especially those operating at high frequencies, impedance becomes a crucial factor. It is represented by the following equation:

Z = R + jX

Where:
– Z is the impedance in ohms (Ω)
– R is the resistance in ohms (Ω)
– X is the reactance in ohms (Ω)
– j is the imaginary unit (√-1)

Reactance (X) is the sum of two components: inductive reactance (XL) and capacitive reactance (XC). Inductive reactance is the opposition to current flow caused by the presence of inductance in the circuit, while capacitive reactance is the opposition due to the presence of capacitance.

XL = 2πfL
XC = 1 / (2πfC)

Where:
– f is the frequency in hertz (Hz)
– L is the inductance in henries (H)
– C is the capacitance in farads (F)

Characteristic Impedance

In the context of transmission lines, such as PCB Traces or cables, the characteristic impedance (Z0) is a critical parameter. It is defined as the ratio of the voltage to the current at any point along the transmission line, assuming an infinite length or perfect termination. The characteristic impedance depends on the physical properties of the transmission line, such as its geometry, dielectric constant, and conductivity of the materials used.

For a lossless transmission line, the characteristic impedance is given by:

Z0 = √(L/C)

Where:
– L is the inductance per unit length
– C is the capacitance per unit length

Common characteristic impedance values used in electronic systems include 50 Ω, 75 Ω, and 100 Ω, depending on the application and the standards followed.

EMT8LXdRyhLdP8DHEUVTjGa2kvxLlFFFdpyBRRRQBWvb6zsIJbm6kEcUYy3djzjCqOTWVHr5nsZ9QhsJWhikC7GkjWVkwSXAzj071wHiTUbi51zWY5WbybaWO1RMn5UQB8ge5rovDUkM2k6nDJPEitHkCSRQRgHJIJ6V5GIxso1PZw8/vselSwkXT9pPuvuudbpmp2eq263NsWxnbIjjDxuOqsKvV5x4PuGtNdu7LeTFewPIn91vKO5WX8Ca9Hruwtf29JVDlxNH2FV073Ciiiuk5wooooAKKKKACiiigAooooAKKKKACiiigAxRRRQBxGOSO4qRRg0nOT9R9aeO1c6LSHCpFGetNUVKBTBiqOKkAx9aaBUoFUJigD+dOUdu9CjingfkTzQgXcoXur6Tp3y3d1FFIUZ0R+r7RnArgm+J90rNjS4CATgmVuR69KzPHF2ZdYvlDZFuiQr6BmHOK5zTILWZdQknVJGhiQQRuQA0jtjOCwOBjnmnHW4mtmdp/wtK+7aXbe3716Q/FPVOMabZ/i7muYFnoxhiAmhN7HK7zoHIjbfGWSEFuMAjBOe9dx4O07TPs+oXMsGnOJbhI1+VHQbIxv2edkjk881soNkXS3ZmH4qaznjT7Ifi5/rQ3xU8Qfw2diP8AgLn+td+troXe00oe4htv8KUW+gd4NLH/AGytR/StPZMz9pE89/4Wr4k7W1jnpyjf404fELxTqEE6g2kHzKu+OI7sEZOCTWR8QZbRtcEFqlukVtaxJm3VFVmcbyT5fGaxdNLLbzDjazEn144rGo+RG1KKqM6tr64udGuzPczXEst7EjPK5OBy21A3QcVmhTiqlibyUrDGsrDfuZI0L5I77R3rrbbwzY6lbpdSXU1oif8AHztO3DL1G1umO9eRiMNKpLmTPawuJVGNnE53aewrY8PyfZpdWu2GPJaziUn1LAgfrVrxJ4aldYb+0uYmtba1hhkjtcKxEa/6w7eCx6msW0TUrqK4t7f7VPHK0NzO5RnbbDgAlgM8AfpWFPBzSUvT8zatjVP3UjeuPGXi2Rp5re6jjijd12CKJhtRiucsM81jzfETxiJHCXsQUMQP9HiJx9cVWlSRI2Rgyqgdj8uCwAzzXJOxLMfUk/rXt05ts8OrSjFI7A/ETxr/ANBFB/27Qf8AxNWE8YeK761kE+osysWVkjihQ4x3KrmuFzWrp7FYCeBhiDkZByKqpL3WTThFys0dTFcJLoc6qm2UTo0x3MzO7ZGckn0rM8txwVcHpgqQfWreh213cytFbwXM7ZRyIQMJgYyc8V3B03TtSiikv/tMEml70uF4WR2wGBfHoK8WthJ1JOcdbntUcVGkuRo898mXP3H/AO+TW5pM8+mW2qXLIVdIkeLeCOScA4NddeaXptyi6nbNI5jhj3QyHarosQK5HrjBrEXT7rW7S5MNjOIHjKmVcAjb8w2ZOT9KypYKpK0m1Y0rY6HK4pamNN4v8WFpJF1ORU82UKqpHtCqcADK5rJPjzxtkj+15eCR/qoP/iKgeJogyyKwKLIDlT97JzxXO55+Y+vQV7dGbd7ni1qailodR/wnnjb/AKC83/fq3/8AiKnPjbxk0CSf2tNnBUkJEPmz1wFrjq07aFp4IE5ChnJKkZ/WtpS5VdmMafM7JG1c654m1FbSHU7szwiUOjSRoGBZSPlKgDmoVMnPb2xjODRE6KsFsMth0Xe/JX5utdff+FbaxXThJqcYlvOVzE5UD724kdK8TEQq19VG57mHlSoaOVrnJFpmzk5PvzxWnaa74g0+3Ftaai8MTFiqkBgh4+6WHFXv7J0SK7S1k1hPMbaRstpWBzj5d3StPxT4Ys7CxtZLaUs7/IAwA3EDcXBHbpU4ejWpPnasiq1ahVXIndmC/irxUqO6azcFlJDKVjODjr93FY//AAnnjfH/ACF5v+/cH/xNLFFJEhilVTuHOCNwYdBiuYkUrJKpBBV2BHpg169GT1u7njVoK+1jpv8AhPvG3H/E2l+vlQf/ABNaB8X+NZYRNBqsxJAyqrDlSO+NveuG7V0WkgeWrY5K4JHXCnpRXm4w5o9AoU4ynyvqTC61i9e5nvP9ZMC08pTbJMwGQWPT07U1ZpgCA7AEAN1GR6HFaVqrXN3Z2g+U3E8UBduib2Ck8elber+F9P02ZI/7Wtwrqvlh1ZnLbgpDbMj3rya0KlVKah9x7FGVKk+Rzt6nKLdX0UiSxzzJIiBI3V2DKoyAFYc1pjxj4tgS3tYb6QRRf8tNqPKdx6Mzg5qePQElmtreO+t2muZlhiUCQcEZ3HctM8S6DPoE1osxWeOeByPIByhVgPmyB+FbUIVaSbasjOvKjVdk7tDLrxr4ygi3pqkgwyjmK3bj3ylUR8QfG/8A0FW/78W3/wARWZMsbwzoGyxjWRfzyQfesT6frXo0W+XU8utFKWh13/CwfG//AEFD+Nvbf/EUv/CwvG//AEE8/wDbvb//ABFchk0ZNbXMbI7D/hYfjf8A6CY/8B7f/wCJpR8RPG3/AEEVP/btB/8AE1x1KO1O4uVHZj4ieNScf2gn/gNB/hXqvgvWrjXNFiurqQSXUc0sFwwAXLLyDheOlfPFepfCW6k+065aF/3ZgguETPG4OUJA/KkxWsz1qiiipLCiiigAooooAKKKKAONAGTUgA9KYPvHNSjqKwRQ9QKkApgqQdKYDwOlSAetNA+vrUij8qaCw5PTH0pJXEccrkgBEJ9KeNwx2rG8T3gsdGvpMgM0ZRfXJ4FFxSukzxnX7k3F/qEmc+ddyyf8BU7RWL1rRvFYpBtRmfBLkepOcVS2T5/1L/kacJJoqUHHQjNOWSVRhXkUZ6KzAfkKmjilLRiRJFVyQMLySPQnir72a2trPO4+fbtAPOCxxRKqo2XcqNJyTfYzPNm/56Sf99t/jTTJLz+8f/vpqaTSZFamNkBLE5JJPucn9a2rJIvsiqzqGJJ6gdaxOacDgdTWc48ysaQnyO9j0Hw7q8ejS5Vo95BO4hGxu47mrPivWy0+nHTp44xqUZOomFwyvIWVMsvIHFebbj6nOMU4OwKcn5SCPbFEYW2Y5T5nqd3Hqp/tfVLeS72acrSIsLuAoPC4Pr0qaw1ubTFmgtbyEJIroxynKnPHNeesxcszcliWJPOSec0ZPc0cm3kJTsdheX0TRzAzRszRyZw4JPFcie9MozRGCjd9xzqOdri/Sui0gWnkqsjQksSX3yKpGPY1zlKMU5RUlZihNwd0eteG9a0HSyzfaokdiA+JFCkY549Kg8eazpt5/Zr6Vexu8yzreC1lIbjZt3YOPUCvLckHNLuOMZpqKjohSk5O7PT2ntovFSW93fJDYrYWiv8Avm+zlzaKBuIOM+vua17nWtG0uI2+l6tAAd5k2S7lOf7ueK8ceRmbLMTwF69gMCmls9zRyLmvcOZ2sdfd31lL5v8ApEB37yT5gOSc81yB5Jx6/wBaTIrRXRdcKNKLCcxr9k3P8u0faziHJzj5u1KFNQvbqVOo52v0M6t/RBYtHItxewW4LDBmbDD6VSj0HX5ZbiKPT7lpLab7PcKqg+XN12Mc4qvd6fqOntGl7ay27SKXjEq7Syg4JU1bSkrMmMnF3R6PpuneGYZYLmXxBoshV0bymm28A5yxx1qh4g1i10zUTd6TfWd+ZEuITljOsazYyQDxkdAfevPs9s980hI96aSWiE5N7m5JrDXt3aSukUDhmE0iZAfccgtz26V6Ppd54ZexSO/8Q2TO4z5ckxbZjgYLdK8czmlyRTFqtj0XVv8AhHHkcWur6ewYbkdWI27e3I6157dENcXLBgwaaQhh0YE9RUZPX3pM1moJO6Kc5SVpDcGur8NPpYikF7fW1sFkyRPkM6/7OK5Wlp2T0kJNrVHstrP4PRRJFrekxyiIgs0gV8Op5XPcVw+s3traSJJY3tvdlJHUHeZNwYffx61yJpOefenZJ6BzNrXU6Wy1m4u54ftMix/ZVMiTgkNHl1BOQegrqbjVdFuwvn6pBIUj275JMsCOyg+tedWY3POvd7W4A+oXd/SoFVnIVQWOOAvJOPao5uZyjI0ceWEJQ03X4/8ABOs1BtFdf3F3alzwCjAZ2+1cm+NzAHIDNgjuM03BJ2gEknAAByfoBzSlJBu3I4CkBtykYz0zmlGKhohSlKorsQ5opvNKKszJkhmkUskbMAcEgcZ9KkFrdf8APF/yqbTWmaR4EfG4bkHbeO9at4GM4k+yCOCKKLzIkkZjIUXBJfHVutRKpyuxpGHMrmQLG+PIgf8ASuo8Cy3ul+IbCaSJkgn3WtwzYACy9CefXFZULltrEY3DJHX8OavRNjPGMjrXn1MwcHZxPQjl6qRupfgfQAI7HP05pa838DatbWg1tL68SKICCaPz37gMG2559K6M+NvDIZlWadwqliyQSFdo711wxFOUVJu1zinh5xm4pXsdLRXP23jHwvdMUF6Im+Xb9pR4w2Tj5SRiugBBAIIIIBBHQg9xW0ZRlrF3MpRcdJKwUUUVRIUUUUAcfxmpQDxntTAACeamXnFc5Y9RUgx+VNUYxUgFMQ4c4zVa91TTNNEX226SEyhiisGLMFxnCqM1S8QahLpenTXEP3wMJnnnpk1wFpBe6w9vd3l7FKx8wjz5NrKFZRgccD0+lc2JxMcPDmZ04fDSry5b6Hd/8Jj4cC7vMnx05iYY6+v0rkPFniS31lYLWx3G3DBpDINjnB4AB61OnhpZhze2ZJck7pecncoGMY61k63ptnpr2UQl8y6MSyuVIZNpyOO9eZDM/avkXU9N5fCDvzGMQM8DmnKp71HvXJ5xz3qWP97JFEgLySMI441zud2OAoAo5Z7WO/mgldWJYBprfaRe3ogjtoZZYImR2+0TsOI1KDgn1NZd9qFvcW3lITu8xcqQc7R3zUV9HPE+xlIKu7c9dxPQj2rOcOp+cYJG7H1r26dGKUfI+cq15ybXRiH2pMUUtdBygKXijNJQAGlHX8KSlXuaAFoorUbR/Jj0x7u+tbVtRh+0W6SiVikRJCvMyKQAe3Ws51IwtzPcaTexl0lbM/hzWYrS3vo4TcWstmL1pYBlYoySMNnk4xk4B600eGvE7JG66VdlZF3JtVScbd4JUHI46ZFZLF0LX5123W4+SXYyaXitCTRNdiube0ksLgXNzG0sEWAWkRRklcHHHennw/4iWeO2Om3InkiMyLhcGMHBbfnbjt1qvrFHfnXfdbdw5X2Mv1oHX61cutNvbKNXuo2hkNxJbGGQESKyIr7j2wcjHNSSaPrMJcy2U6iO4gtXJA4nnUPHHwerDpVKtTdnzLXzFyspNwzD39KStm38O6xeXklmkXl3CW9zcusxCgCBjGyggkZJ4FRahoOtaajy3NrILdDErTqAYw8ihtpIOe+PwqPrVB1PZqau+lx8krXsZddimpeFkuoEhvtag077BbidVcuxu4SCmA3G0c4rjaWupMhq52l7qGjQWV3Pp17rxvbp5ZYZJ5MRvJ5igO4XjlR+lcvd32o35ha8uJpzChjiMpLFEJ3YGarGSUqqF2Kr90ZOB34FJlvU/nVcwuXW6EIYnofyoKtn7p/I0Zb1P50u5vU/nS0HqJtf+635Gl2P/dP5UZb+8fzNJlvU/maegai7HPRGP0Bo8qUnGx89MYNIGfszfnT1LFl+ZuSo5J9aNA1G+VKCRsbPTkUoilOBsYn2Br3xvBHhCWzZ4tLj82W1LRnzJc+Y0eVI+b1ryR/C2s2bzR6oJbKQW0k1mHRpTdSoQvlxmHIBORycdaSceo7Poc60UynBjcfVSKb5ch5Cn8q2bnw54rto/OudL1BExks0bNjjPO3JrHy44yw9Rk0rxewNSRLa74riB9rYDgNx/A3yt+lXtM322oGAxJlpZEMjDLKoDcKfeqKQXkg3RRTuMld0aOw3dcZHeprtLhjHcbZFMiYkXawZJI1Ctn+dc9amp3i/tK3+X6nfhK7o2qLeDT+Wz/Qm0qNluHldGw8VyluQQrNKo6IT39KuG3SZn89ZdzzaajxyyFmRW3Aq5GAfrisJ1mTbvWRAyh03AjIPRlzTdz/3m55PJ5PrWVTDuc+ZSt/Xqb0MwjSpKk4XV29+6t2/r8TQ1C3tUit5LeDyiZrqF13M2RE2Axz61nYPpSlm/vHHXk5pNx9a6KcOSPK3c4MRVVapzxjbbRehYsneK5ilCu2w5IQZJHevSrCPVZ9FvY49FjZL63VkvZrm0V4EHOdrvkV5aHYMMMR7g4/lXRwWzrDL5l3c7ZEikQKgaOReuDk0T5FqzOPO9IluaxuFWKQWwVMFFaKVJfMKHYzEISRzSrDOgXdHIMjIJRhke1W/Dcd7BPqEsHmGIRRwsjYUcneDg+h5ro2m1GcgSYwDlR1Ax714OJw9Zy9yN0e3h8VTUbTdmc1ZWouL2zhmVljlkETM6sFUt0JOK7WLwpFFCitcWzORJ5nzYXLIy8dD6H8KqIbrOJJYhGMPJJzhFT5hnIxn0oia71DdMGnw7kEtkEtkqO3avGxMp09Jxf3npUf3jvCaS9Lk8nhSEROTPAY9qRq+8EJuYA4z9a7zTopIbGyhkkEjxQpGXU5DbBtBzXGWmi3l0yI3meShJAYn5d2OfrwK7azt0tLW2tkJKwxqgLHJOO5NevknM+aTTS8zy82lqouSk12RPRRRX0Z4YUUUUAcpt5NSqKbtyTUiVzoseqk4qVVpqipgBx9M1Q0Zus6WdU065tVZVkdT5ZbpuHOK80tNPuIBd287i3vLOTBSQ7d6H+JM8GvYlGcUyewsLxNl3bwzD0lRTj8etc2Jw6rRtex04fEOhK9jxu482AuGl+ZcZI4ORyCDWZc3kbwO8rO0zL5MeDyqI27dk9u1ereItH8OWWlXcw0+AOEYRt82VJGMjJrxmV7C3naOTznVCMhcAEEZ4rlw+CVOSu7s66+PdWLSVkQo0j9CSTnr1qWMyq6ldwYHKlCQ2RzkEc1ONS0xGRobaVdp/iIOQRyKBqOmjB+zT7hno4wM+lerZnmpx7mnGYbyF1ZVLqnyk/eBx6muYuz/AKRKDg7SE49uK0F1SGJy8MLLknAbkYIxispmLuzHPzEt+dRSpuDZdaqqiVhoFOxRRW5zBikpaM0AFKBgH60Uv8K/nQAmK3JdS0S+TRnv7a9M1haJZzLbGIRXUcORH8zHcvo3BrDorKpRjUabvddvMalY6VPEVsracDb3Hk2ugXWjvGJF+Z5gw3qc9OR78VrWXjLRtP8A7V+y2N4iXcQigRBArQ7UKBpJdxdjnuaoDwa+SP7VhPkw2010I7aeR4TdANCu1OpPU+lRReErkzSwXmoWlqx1FdMti4eRbicqHypToMEcn1xXhVIZZWi1KWn/AG93v2+enR9jpTqpjLDxFb2h8NmSG4kbSodUjlYMuXN2XKlCx7Z5qax8TWkGkRaXPBcOwtbmBpcQzJukuFuFPlzHBHBBBqtF4YmlktIheRqbi71e1BMbHadOUszEZ/i7elTjw5Z3Fxp8MN1LAJtJ068cmCW6LTXXDcRYwo7kmtaiwEnr/i66Wcv1cv8AhrEp1FqUta1iPVIbOFTcN9mbCtOkEZ2eUqBVWDjAxx7VrWfi6CNNPiurSWeOK2i+0AMn769tyn2eYE9lCgHv1rK1fQTo0MRnvoZLqS4uIVt44nB2QSGNpfMPGM9sfyottD8+OG4W9jFv/ZsupTyGNsQmOUw/ZzzyxOMfWtXSwFWhFP4E3bda9bfp57CvUUn3JrTXYYrqGe6iuHP9n6rZXDRlN7SXryP5i7jjjdTJ9ct3tvENusdwU1GDS4bcyFf3Qs9mS4B74OMetW/+EXSfU9Ss1vFtzb3MNvGq29zc7jIgbczKAAvOMk1z17bSWV3eWcrK0lrPLbyFPulo2KkrntWlGOEr1Lw3snbXa6kvxtt6Ck5xWpNd6VqtglvLd2k0cM8aSwy43ROrjK4dcr+tUsVq6br+saYpiimE1mw2y2d2BNbSL3Gxun1FWlPhPVJW81J9FmcsE8j/AEmw3n7u/fiRR69a6PbVaTftY3XeOv3rf7rk8qfwsweaDWvqPh/WNNRZpI457NvuXdk4ntz9XTp+NZJrqpVoVo89N3XkRKLi7Mbg0uDS4orQQnNFLSd6AADnj0OK9T8KaB8O9ftYEC3Y1OKBDdwvcMhLgANIgAxgnpXlozV7TtQvdMu7a9s5THcW7bo26j3Vh0IPemrCd+h9MxRLDFFEmdkUaRpuOTtUbRk1xa6fqW/xfa3ur+deXaWdrYyuMfZVumZwka5zxwfwrz5PH/i0agt9Jebo96b7QKBAYwRlQuM/jXrSWHhrxGmma0bdJZCkUsMySOrKVO7a2wjO00mrdQTuX9Lsrqy0+C0vLyS9nUOJbiX70m4njB9uK8G1zw3f2eraxbWkMs1vb3ZRZFA6SAOAfzAruPG/jfU7O8vNF0wiDyQiz3Q/1xZlyUjzwB05rz221/WbMs0Nxl3uVuneUCRmkXj5i/Y9xQkr3YN2VkbOj2fiLSgRJYGSJJI7l4/tcKMFmja3GELdSWHbtVqK41OxlSzGjq8yW155ZvJkm86KVgsgZ0O3gHCnPGa52TxFqzxxR/6OqxhuViAZi0qTZYn3Uf5NO/4SXWj5jO9u80iGIzPAhlCFiSob07U5aqyYqb5ZczjddfQuapbarrEdo6adJEbWRrYvPPHvfcwjSGNSRwuMDisuPw5r0oBS0PMxg2tJEriQBjgqzZ7E/hV6fxFqrxQO0ds6HyFUvECI5bcllIx9c81T/wCEg1ZmVpJInxJFIQ8Y+YxGRl3Ec/xH/IqU1JXHOMqbcVt0810ZlTwy28s0EwAkico4BBAYe44qKrV5cy3tzcXUoQSTsGYRrtQcAYAFV8GiwxtddokgubWGJxjyjtLf7OfeuUArQ0+e+jLxWvl5OGYSLu6cVE4cysyoS5Xc9s8Pnw8IHga0USOMySyhXEoXpyK12ttFwTHaJls4IUYz0rxqzv8AxSk0fliL0VANo6+uK1pdb8ewjZvjAIJXEEcmOwOcVacUrk2lzeR1GreXDPCslt5mnvKgvUTgOoYYOfaupTw9oACFLZgCAwxLKB6jo1ePLf8Ai9iySCJ1fcgEsOFy3cHHWvYPDd3PeaPp73C7biKP7POP+mkQ2k/jWTpwm7tJlKc4OydjTt7a2tYxFBGEjBztGTye+Sc1NRRVpJaInfVhRRRTAKKKKAObAAJFPVSKbjn8R/KpVArAseoNSoKYM8VKgA5phqSqO/pUijrUEk8FvGZZ5UiiXG55GCqM8dTUB1nQk+/qVmOdv+uTrSuh2b2OU+IV+0FnbWa43TsC3PO0cmvI75FQiTaW3AbjzgN6ZrtfGmpQ6nrEP2eRZLaOABHQgqTk55Fc6QSpQkFMg7SMgn3Fck66p1LnbRwrqU2c6ZRnpx6VLCUkYK+VBPXsB6mt1YIc58uPOD0UVoaRop1e7ngUQxpDbG4JmYR+ZjnCHua2p4pVW4xRNTBypJSkzJk06C0tLidxufy22FjkZbgYFYIA9a6TWriP7KYVwG83YQDkfL6Vzma0oRkovn3MMQ4uVobBRQTSV0HOFLikpRQAtKei/Sm+tKev4CmAUvWkpaQG+vii7NxezS2dpNBewWUNxay+b5TG0QRxurKQ4PHPPer+i+J9MtRcNqViZCuoLqVlHbxx+TbyhdhEYYgjOB6/nXI05a4amXYepFw5bJ2202/4GnoaKrJO50Vr4qvLXzgtlZybrq/uoHmDmSAXoIlRGUjrxz7U2LxHdIkaPY2kqR2thbxLKZsK1kCEkO1hk8nIPFYYFOGPrVf2fhrt8m/r69w9pPuaOsavcazJBLNBFEYjcsBCXIJnk81s7j69Kih1S6j0yXSUSMQzXSXMkvzeaVXBEXptyAT71T/z1pUXLjFdFPDUlGNNR0TuvvuRKT1dzd/4S68ZrhpLCyl8y/XUIg/nYhuFVUyNrDI4HXNYd7cvfXl7eSKqPdTy3DqmdqtIxYgZ5quev40oqKOEo0JOVONug3OUt2GBXYeFrWZ9PvZ0XTcRXkRQ3/yEkxPGQkh+XHPINcd3rf0nWdKsLSS3u9IS8laczCV3AwuwqFIKnvzXXHchq6sdZ4aTWY9KiaytdFRJnli23Ezh7oqWLNKudmO3TtXMy3fhnVrmQX9mdJfJVbjTMywlgcfvYG7Z7g1Xt9T0iC1SCTRFluEeVpJ2ubiMkO4IGxOBgcfjUWralp98ttHZ6Xb2CQNKR5Lu7Or4wrs/JxXLUwlOpJzj7su60f8Ak/mmOM5R03RJf+HNRtYDe2skOoabnAu7FvMAB/56x/fX3yKxetW7HUdR0yYXFhcyQSHhipyjj0dD8pH1Fakeq6LqEkg1+wAlf5RfaUFgkQk/ekgH7tvyrFSxFFPnXOu60fzWz+T9EXaMttDnznt2oxW/c+G7homvNGuF1axB+drVSLiA9ds0B+b8RWCQVJVgQwOCDwQfQg10UcRTrq9N3tv3Xqt18yZRcdy/pOnDVLr7L9pS3PkzSqzo77vKUuVAQZzgGrcXhvWrjy2t4o3jlCmFzNGokLttVfmPX2rJhmngkWSGR45AGAaM4YBhtIz7jirP9p6p/o6/bLgLAI1hCvjywhyNoHpXRoQ79DQHhjXyCxgiUhymHuIlJO7YMAt3PAra8O6r4n8PX0GnNMkEM6Nci2ukaWMjazAhYjuG7BIq+mjWTybbu7v45PsUdwIvtaS4fcXVtw4IHBfsM1z6W7alqdtczazazzMm64aAvbNBDFFsARpAF44AAq7WMnJNa6FzWNM8Sa7fvq09na24vYYrlvLmXYkK7U8wqxL9PmNY9voNzcXt9YCaIS2UhFwcMVEChmacHH3Rgf8AfQrqItO0sxrD/wAJDKdtpHZfJdoscc7IxmhIb+BuMfl3rH0q0t7zUD5mqfa5Li3kS5Ec0tq6xIFJLySrhsYwFHU47VLjYtO6uZd1oWoWbW5nCpDcXUdtHISCQJG2o7qvIB5I+laM3hKdLu5tLe6SY28iQTu0bIqTyOqRouCc7sk/8BNbkOmeHrmLS0u9Uu3V2lkaFrobhOrbS3oHT06e9ZeobV/smVtUuJFOpG3ncXgZrm283Czx7fu4GQ2e5p8ttyVO+zMnUdKvdEuJbS5CzW8jsvmIGMLhW2rKrdvarl34Q1KKUxWskdyQo3AMEYOw3Kg3cEkcitS70/RriLUoLfxDJHp9oIyLZpDMjSCRlY/vCOnGMVSinS21W50+71i4uof7NlgW4hn2wrOYTIE3Hkp/Dwe9Zyg46x/r/gm8KqnHkm9tn2/4H9LzoHwlrytCrxwIZT+7DTLyAnmOR/ujrWPdWz2lzc2sn+st5XicjgEqcZGa6hxZz6Ib37derqdpFFLbA3RkVCXA8pVHIAUjHf1rlJJJJpJJZHZ5JGZ3dzlmYnJJJpKSlsOUJQfvf8D5EeKu6a226iHaQ7D71TqS3lEU0EhOAkisTjOAD1xTepB3aNPYR/a47aOZVUqqSlwAzDhvl54rHXUtUnklaS6lOWyArkKmecKPStvTfEeiZkintLm7R42Q+XE/BIwrEL0xWVcxqr7RbNEzHIKRuq7e3Dc/jmvOxUXGmzvwrjOotCRbi5bGZJGyckM561t6ZrF9p9zYSJcyparcI1zCXJjZG+V2YeuOfwrAj3Dr2HNWggKEE+3J7V8/GvOnNSTPelQhOPK0ez3GqabaHE9wiEqH6MflbkHgVV/4STw+Bn7dHjBP3X6D8K8+0rR9Z1SB7rzZHgTKoXfeSUYLtXvWqvhG4V4gyPInAkJbbu35ByB+Fd0s1rKWlO69GeasBQtZ1Neux6CjrIqupDKyhlI5BB5Bp1cj4c07U9LvbiJjIbSRQsgdtwWQLuVlJ/EGuuFezh66rw50rHl1qXsp8t7+gUUUV0GJz+OT+dPXt64zRxnilx/kVgix65Yj0FYHifxBNosMK2wU3U7gLvGVUdyRXRID6c1wPj+3kWXT7nB8sEoTjjPXrUVXaLaLppSmlLY528/tvV55prl7iU7t5RmfYpwPup0A/Clj8P3soXbA6kOqMpByS3+FW1v9WhC7ppNsqphkb7yhQo5+lKviPWYWJNxL82OrdCK+WqVsROWjPqqVOlCCaSMi+je1kFg9sIXtXkLvyGl3YxuB9O1UvT9KsapfzXdxLdzs7POzfMeRgAcKfSs5Lpf4hkY44r06OHnOCZwyxMKcnFlzOO+Kw7ua4WaQFpFJIIGWGFxxWh9pLOMDgEHkdvQ4q7cWEU8ZuFGRwGHXb24ruw1N0Je91OPF1frEVydDl8k8kk/U55pM1YvBGJnRPuphOABkjr0qtXpHki5opKXmgBRS5FApDigAByVHqacfvHFIvLL9aU9TT6AAooopAFPXtTKelNAS8fpRxR6fWjj0pgKKdH98fQ/ypvSnx/eB/wBlquHxImWxARzSClNN5qCg70ZPFHNKBQBda9QpdJsJEsaqjO3z7gVyHbuOOKrCQA/6uM/UUyjmqi3HYUve3JBMoP8AqYT9VoM2Qo8qEbc5IXrn1qOjAqueRPJEtW1/eWcgmtJDBKOA8JKNj0JU1rweIbS53Jr2mQX4fAN3CBDfrj1kXhvxrnuR1ormrUYVtZrXutGvmtS4+7sdPJoX2xJLrw9PbahBt8w2rKkeoQDurxHrj1FS3fha/gg0iSFo5Z78IHglgWEwMYTO24seigHOQOlcrHJLC6yRSPHIvKvGxR1+jLzXRWXizUkjS11JF1G0UggzMyXcXG3MVwmGyOcZrONTF0Vv7RfJS/yf4CcKcn2/ISHw74jmnvreOzhaWzRHlA2HKvH5ylG6HI5FQy6JrEN6lhNHaJcGE3D/ADwlYY1wS0pUnB5HHvWn9jOoeZceHfEF00r5aWy1C4a3vchdvyvu2tgcVix2WvNJqUxW8S6soTPcmTzUnMYIRsMeSeeeelaU8wp1PtWa3T0a+TE6DXQh1S2l0zUL/T3MUj2kzQl1jAD4AbcAfrVvQdKbWrmWB5lgWOON/M8lXAMjiNS+SPlyf1rIkllmd5ZpHklc5d5GLOxPcs3NOiuLqB/MgnmifaF3ROyNtBzjKnOK6ueXcjkXY6N/DM8FpaXVxMfLmu3t5jb26yiCMStAjMuQ+5mGAMfjUF9pGnWEl5BLqsSTQQrJHC9vmRnYMTC5jJQMCADyetY4vtQChBd3QQOJQomkCiQHdvxnrnnNRz3FzcsHuJpZXHAaV2dsderGhzl3BR7lnS4ra8vrS1upmhjuHWISRRI7K7kBflYgY9a1JvDkrRzS2NzFL5UupRiC4VYrhxYkFyqjK9Pm61zoZgQVJDAgqRwQR0INSfaLvOfPmBBkbIkbOZBhznPfvS529w5bPQ1LXStRkcOksUCLYQ6i08mQqwzfKpAQFjk8dOKtXujS22n2GoTKn2a6jjMdxAq7t7A7hJF/dBGM8Vhx3N3EUaO5mRo0McZSR1KRk52KQentT1OozbkD3DBl2uGdgu3O/DbjjGeazna127PudFJ1L8sVddrX/r8xGtLogtH5cy+sLK/Hrjr+lWLfTbyeCWdFKyRsNkbpjeMZypaq/k28RBluRuHIS2Bdvpv4UVr2Gp28dvdZWX9yAyebKXeQtwAMiuDE1q8YXpavTp/mezgMLg6lXlxL5VZ9b9PJaW8yTTn8SIi/Y5vs6orRymBUhkYE7v3pVckjsTVm4vNfkmtIr+7vZ2kaMFZZWbfEWB2Kfek0e7kujcmYgu0owo4wuOn0rsNC8NjULs3LSCJYY3+6FZizjaMB8+9bNSnaM0eXPkg3Km7q+nQxXtrVHdjZkBzJsRWdjHg8ZwaiZYBnEEgy23nece+TXct4WvR91o8L90hzuP1rOvtMvNOQSSbpOpZd2RjPpivNqZXG94yO2nmMtpIr6Xc3dtYiK2lEUTzTBVVCZC7bVJLk9Pw7Vom81Z2jK3cmxRtcZOW2/Mam0fR4tTt1vYLooitLborQAkbcc8kc1v22jtEyma5EqjjaLeJAR7kZNeRUynFVJ3UrI7oZhh4Q+G79CjoltqbTx3c9zIY9rl4mJ+Zvupn6DNdKKaqqowqgADgAYFOr6TB4f6tSVNu7PExFb29RztYKKKK7DnMPHPFSL26U3HJ9KlC9K50Why5qO8sLLUYHtbyISwvyVPY9ipHOanUVKnf3qrDOTm8FRYjis9Rmjt4922G4QTKu7rtbhq5DxZ4cfR4YHF750k5ICCMrgDqRya9gFeYfEC4aTUbWBDloopcKPVgMda5Z0KcffUdTojiKrahzaHCPb3d20KgcCNI1LcAKo6CrA0dkUFjkj0H8hWZI2tglGlkz1C5B/LFMZNcPzlrj1zk9q64QVrGMqmt7G5HojuJGyoVASQc9e2cVcgtWs4cSvxLHgAkcHGea5df7dbKiWfDdfn2g49c02aHWER3lkfao3HMmcdulNxjs2PnktUjPlILyMOhdsZ64zTM0UYrQwFrR03TJNR+0hJ7eJofs+BcOEEhmlEICk8cZyfas/FdN4ehBhZm0q3ujPeQCKe5lCIi2/wC+li2uNuCOpzTW4noivN4clhW8H22zeWDUoNORVkULMJeBOjk42A1bj8HXUiuo1TSBLnCA3UexgF3MS5PGPpWlolhnTjNJ4Wub6G7uJWa5ikj8t4UlwEi3EEAHj3rnNc0i/wBOuHludP8AsMVzNObe2Z1Zo0VvunBPTIqrK1yLu9jLVGDsuCT8yrtBO4g4+XFNIIJB4IOCDwQfcGrMckKiJGd8FQSwHzQtnPyVCcvIfmBLtgO5wCScZbP61JoMorSk0LXYlZjYzMo/ii2yKw7FdpJx+FZ7K6MVdWV14KsCrA+4NZxnGfwu5KknsxtKKKXitEUaemWlteyXUc9yIBFZz3EbEAh5YwCqfjW5d+HNPtl1fbqcc7W1rbS2Xl7QbiZ8GSMxf6zjtxVbwnFeSTat9lispN1j9nlN6zoEE8ioDG6A4bNdQsniRNc8R+Tp+lXN2ItPsp2e7XYnyfLteTBLMB83StYpdTOTa2MeHw14ekGJPElpvdEAIGwRynAYMGPIrnb61SxvLu3iuEuoYXeJLmL/AFc20AkrXR+JNJ1S4ik1q5ttKsIraCCBba0nSRpdrlC6hO+etcmk/lR4UZMgdJgwBXaSPue9Pm5XoCXNuyGSOWJykisrAAlWGDgjINMqadonlkaHzPKO3Z5p3OBjoT7VFWRYmDTunWlxT0ilk+4jucgfKpbk9BxTsJsZVrT7JtQuVtlmhhZo5pA05KqfLQybQR3OOKhWN3YIqMzk4CqCWJ9ABzWv4dhtzrNpDd6ebxXLxfZmkEJMjAqCS+Bx6GmG5NH4UvHzuu7NSdJ/tVCsgdW5/wCPcspwHxyaWw8J397BDcfa9PijmgeWPfcRltwG4I6g5BNdJCmkzarpyjwvdyiHSppGtbcwjzDHL5ayuu8KdpDBsnOT04qlrfh69vvJk0nw1f2JiiuJr83TRhZCxDqVIbHAz2qiTkdS0670y5ltbjyzJEIyzQuJIjvQOAHTK5xVNldSoZWUsoYbgRlT0Iz2rRtZI4490kiSbblSbKZSUmBjZTIT7fWqtwwZoCZWlxAqYPBh2lgIvoKmzL0K9KKcquQWAbYDgnHAPpmigWonHGe3+c16Poni3w1penwWk95ql3KBmV54GdQSP9XGGf7orzij2rz8fl9LMIKnWbstdP8Ahma06sqTvE0tcfQpb+WbRjOLWf8AeNFPF5fkyHqqcn5e4qJNL1R4FuVtZWgaCS5EirlfJjcRs+R2BIFUgMV2Wg3OhJpUi3etXlleR2+pxpBG+In37JYwoCEYYjkE9a7KNP2VNQu3bq9X8zKUru5gS6Fr0MixNp1yXaFLgCJDKDE/Rsx5FRX2kazp6Ry3llPDE4UrI6nZ83IG4cZ9q7W0uNKmtNPuL3xtf2169rAk9ukAHkjdnYAq9BnNUPEWq2atpFvpmuXeqWu95btLxt0fnxttjcKyDqCa2snotyU5faRy1haQ3Un76eOKNT8wLAO/suatalBp8MysoYxsihEt9u35Rg7nJPP4VJptrBMNTe6VBGcpk8bTksSv0rKnjWKWSNJFkQH5XQ8MOxrzFepiZLma5enT7z35JUMvhL2afO73vro2tu34dyT7UU4t4o4R0yF3yfi7/wCFPubSZEeVp1maMos6gsWiLjK5LcGqlaUlzYOs6gzgXjwmbKj90sYyQvPPNbVE6bTgvXr2/S5zYeUK0JqtL01t0ey23sn5P5qvDZJNEZVu4QyRtI8ZV9yqvqcYpr20ocqivIFC5ZUYDJGcYPNOSVEspoFz5ss8ZY/9MkGQPzq+dQt9+4GQD7TbSnjHyxptbpUOVaLdldf8N/wTSFLCVIRUpKL0va/97u/JX9Svp06W87eZKYQUOXwSQy8gYFdfp3ikWR3re5fAXO1wCOvQiuLjaJ7xmdd0ckrtg+jEkV0OmwaVvkF3pouIWTbG0ErJJG+eG54IrqdklKWjZ5TvdwjqjrIvHyc77ouNwJzG2OOoGBUNz41sJmz5qsvQI0T5I/3iKyntvDEIx9gugCxI34OPYEVVC+HN522MhTaRtLYYNnqCamVWC6McaMn2PRvBmr2N/HfwWx+WJ1mweDmQYbr9K66vKvB9zp8WvW8NpC0CzQSo/m7T5p6hQVOMjrXqopxfNFStb1JacZOLd7dgooopgFFFFAGN0OfepQTUeOtU77WNL0xd13cKpwcIOXb6CsG7FK+yNQGpM9fmAx7j8q8t1nxbq17JNb6ext7NmUIy8Ttt5+Zh0zWAJdZkILXFySTuGZZOpb6+tcc8bThod9PA1Zq57RcappdocXF3bxnBIDyKDx+NeOa7qJv9VvLlMFPMKRN1yg46Gi4sZFt5ri4e3LW4VfLuZZBNK7E8ooz+tZXtiueeL9tH3Top4P2U7y3EIzJ5mTv6A56D0FPeSdVfDt0pvPHFamlWiX9x9leRkWRedoU52/NzntURrTUkrnRKjDlehlQLNdMoTfvB+YduD1p2tssUDKPvMVTj9a7BR4a07SLu1cImsW8zo8xkRS67sgqrMCRjjpXn2r3KTMm0qRln+Vt2M8YOK9Xk5pp9jx+e0GjJpRSUorpOYWrS6hqCQLardTLbK0jLErkIGkXa5AHqODVTNJQBeTU9Vjiit4726WCL/VxrM4RBkNwoPrzUc93eXbb7m4lmfk7pnLkE9cE1XoBxTuxWHc0EZBFJmikM7yDxNp0Om6XvaQTSR+RJ5ShmgMQ2GQqevbFclqVtfwXBe7cym4HnR3G7ekyN0YN/MdqoYrVsdQh+zvpuoAvZSEmF+r2kp6SJ7f3hXFTw6w7c6avff/genYwjT9lrEzRRVq+sLmwkSOXa6yIJIZojuimQ9GRv51UrtjJSV1sbJp6okSSSPOx3XdgNsYrnHPOKcJJQxO98kgk7mySO5NRDApc1YyUySEAMzEehYkevQ03/ADzTc0ZFFxWFpRTacKBMcO1dz4Jj1Iw35tjaeWb2wf8A0t3iBeJicJIn15HeuFyK6HRNS8OWtpcRapZzXEj3dtKvkqoIijYMwLlx19MVa3Ezq9ETWlh1MwwaE4j1i93NczDzJbhpQSquBkKP4TmsHxDr2qDUYI1htLG/0priGS401t3nNIVYnfjnFFnN4Rg+1x6jpWrPNJdzXlssMgjCWLKWjyA2MjvxVXWNQ8IT6elvpGm3NvdGaCV57llckKGEihgxPORRdBy21MuLV9Yhl8+K9uUmEUsHmLIQ/lSMXZM+hJJNSNr/AIgIdTqd8RIArjz3+YBdoB/CszNJSuFhUJ81PXcP1NTRm2S4Y3ETyRqxyqNtzUC/6xP94H9akmGJpR0+c1co81Jp9/0CE3CqpL8dTauL7R5Le3RYi0STIzQgbCBgjOO/51T+06NhB9jfidmbD4+Q5wP/AK1ZvpT4YZp22RLuYAk8gAKO5J4rzYYSnRjbmdvVntVM0r4movci3orcqf6Mu/aNH2w/6HJuWVmf585Tngn8qVLjRwIM2cnyyuz/AD5ypzgfTpVAxSrJ5JRvNDhCvGdx7VNJZ3MWfMQKApkBLKQQDg7SDzVulS25nr/ef+ZnHE4jWSpx039xeW+nkXEuNHCxhrN93msz7juJTnjOfpSJc6QMb7Vji4kc/wDXI52r17cVm8fpSZ4qnhY9397M1mNRW92On91f5G5eXmkyQRx+UZZFQBChK+WD0Bf2rFBwyn0YY/Om9aXpV4agsOuWLfzZnjcZPGzU5pLS2it/w5cjfbeR5zskYqRk4xKNhOPxqmV2MyHqpKn6g4qWVsGBx1EaN+K8U68VftErDpJtlX6SANW1TSs7df6/U5qd5YZX+y/zX/AK9LSClpmY4GikzS0CFGcjHXNdbodnqN2VaCN5NqgvtUkDn2rkhjIrstM8Z3WmaVHpkFvCmGYy3AJE0qsegx6fWiUeu4J9tDeliiKbZCBLGfnB4x6/lVVk00rtW5hywwRsb+YFYMOtXd1czxmaQpMrCMyAFyBzgsPWrcZbIx+vWvEx2MeHqJRietgsKsRFuUjVtUGnzx6jB5MwhVsZ3E7sdR0r1eCUSwW8vH72KOTg8fMoPFeS28itDNG2eRkfStH+1ZLiy06yU3nm2gMI8ttsTBj8jZB3EjpXFRziVpOqvSx01crjdezdr7tnp2aM15sqarsWRHuzhkRmLuqoxzGc4OeuDWnp2r6/b3Flb3JM0EkqI29fnET5UMH9iK6qGcUasuV6GFbLKlNNpp2O2ooor2TyjGkO1JG9FP6DNeO6veSXOru02WjimUbCeCoPIr2QqrB1PQjH5jFeW+J/D97Z3ct1FFJJBLyWjUtsPuBXn14trQ6qE0pXkJBqOioTu01mKswJMv8AEWJB6enFaFvrOiJLE403GySNgN+cANnuKwFvLCSGNZEMV0pAYkDynx3JPOfwqFruJBhSrDjkYyQPSvm54Zud7O59PCtDls2avi29sL+/jaztjGqxAs3PzsST0HFc7/npU6XBu7oJKzBWUqhBA5UZFWGtrbIBMnHoc5P4V6Eac7K6OHnhHZlNeDngfWtzQp7CKeO2ltSby5jneK4MpUeWUICAL6nvWWbS1LEs8i56cZ/nTYme0u7RreA3ASQEBtyM3UFNyc110MO3K8kctfELltF6jNY1PR5HuYpNFDXkcpWS6N1KxIX5emMVzl5JYzTu9rBJDEQuI3YNtIUA4P61113FGfNlmgCNJIWWMndsU/wknk1xcpBllI6F2xj0zXqU2tUkeXUi0k2M+X0NLlfQ02krUyHZX0NGR6frTaWgB4K/3f1pdyf3D+dNFJQA/cn9w/8AfVG5f7nP1pooFO4Em5P7n5Gl3J/c/WmUUczFY1LTUYfI/s2+jD2TsDG5JL2bk48yM+nqKhv7KXT5ljkRJI5V8y3njJMc8Z6MpH61RxWnZX0TQf2bfkmwkcMkgG6Wzf8AvxZ7eorF80Jc0Pmv1Xn+Zm48ruiiHT/nmv5mlDr/AM81/Wp7+wm0+by3KvHIvmW8yHKTRHo6n+dVa6I1eZc0XoUlGSuiTzU/54p+JNKJV5/dR/rUVKKv2kl/SDkRL5i/88k/WlEo/wCeSfrUVFP2sv6sLkiS+d0/dR/rR5//AEyj/LNRUlP20+/5B7OJqvqMDxRwlJVAjXM6kGdWWNk8pD08s+lZmT3pKKy63LvpYXNJzRzRQIUcFf8AeH86muR++f3wf0qHpz+FT3P+tBH8Ucbf+O1vH+G/VEP40QHNXLJ4tt9C8ixGeEIjvwoYMGIJ96pmiuapDnjys6aFZ0ZqaV9/xVv1NKZ4JL4XQmURpNCnB+dtqgGQD09au/aLLMavJbBkiZdsRzCu6ZWypbuRnNYOf8aSuWWDjJJXeh6VPNZ05Skoq8nd7+pp3lzBNBdLmLcl5/o4RVU+SQckY7VmUdaK6KVJUo8sTgxOJliZ88txRjNKaQUVscxI3+qhbvll/KllLMtuxzzEEHuEJWgc22P7kufwYU8/NaQHvFNJGfo/zj+tOvpKL72/L/Mugrxmu3+a/S7IP8aKXikNIgM0ZpMGloAUE1esLKS/eVFkVGjUMNw65OMVR/Otfw82NRiQnAlRlHOORz3o1eiFdLVlmDTL2zubeV8Hy2yPQgcEHFdJJYXkEro0DqVCuRtOVVxuGa67RNGha5t7qdg/lbj5bBWVsqQM1uy3WmxagRM8SF7cKSwBXcGKlXPY9MVwYjCRrq1Xc68PinRbdPY84gtrpiNkRcDJI2H9a1NJ1RNLEqSaatzm5Dmfcm6BWAXAyK6eW9sYGuTZwRu3zB8BgpRh97ntXDb5re9uLTdtttTu4XwFyglDbBgtXBVyyNCHPRvzdNjuhj3WfLW+G51Z8U2i7lWwBUs2AO5z1IxUsPiG3lkRE0/5wYlX5ehaTbgcfjV2Lw/aIEB6gLztzyPmq/baZa27F1UEkg5xzxzXlUKGYymudWX/AG6b1q2BUX7NO/zNCiiivrjwjNxzzTtqsCGAIIwcgEEe4NGOaeOgOKxRVig2haBKxeTTbRnbkkxLyajn8N+HJYpEOnWqZB+ZI1DD8a2Bmq9/KILO6lJxtjY598Ucq7Du7His1la2es6lDbZeO3B8ku33XYdMd8VNALpf9YQpbklVA7djWJeancxT3NzG37y4uJCW9lqFvEeqMc5Tj0XA9OlRGkpXbRr7VxilfWx05sVZVLyuQOeScnNdDpt5ouiRSzC28692bI3mO5EzycA15x/wlGrKRlo+B/d5qObxFqcvEhibv9zHWuiNomLbfU2NZvJLi4upjgb2aQhQNuepx7VxpOSx9ST+dXX1CeRJVZVy4xuGQVyecCqXcZ5oS1bBu6SEoNLRTJEFOoxRQAUhpaKAAU6kxS0AT2dubu6tbVWCmeVI9x/hBPXFaKx6BcTw20cN3DN9rSDDSeYk8ZfYxJwNp9KyopZYJYpoWKSxOHRh1DDoea0Dq75Qw2VlCwnS4kaNDukdDkZZiSB7CsakZuXu/mZyUm9BZNGmV7fFzaGG4NwElWQsgaE4ZDgZz9BUy+Hb8ySxNLaqUeGMF5Cqu0y7kC8Z5qK01e5tY4o1hgZYzcn5w2T9o27sEHIxjjFSya5dysrtDDkT2k/G7Ba2BVRyenrWTWJvZW9fn/kQ/a30GxaLqM8W/wA2AFGuoo4pZTvLW/LrGDx71HLo99BAZ38v5EhlmiDHzIopSArNxj9acms3aPC4jizFLezKDu5a7GHB+naifWLu5txBKkZOyNGlzJvZYyCMru25/Cq/2jm6W/r9A/eXFutMUajqVpakBbaJp1WRiWZUQOwU+tTwaDeCa284RGJ1tnKGUoX88kKmQDg8c1TOpXJ1D+0QqCYuGZBnyyNu0qeehHWpv7a1DzIXbY3lXZvFU5wWxgIcfwjnFDjiOVKNtvxE/aWsizbaTaSyWqNKpM1pfTFFkZTHJEWClmIxgY5rKu7SWzkSORo38yKOaN4m3I6OMgjIFWY9UljWPbBBvSK7h3ndvKXJJYHnHGTiq1zcyXRty6qPIt4rZdueVjGATnvVwVVTvLYqKnfXYgpaQU6uo0EpKdik9KYAOaXGKBxTqLAMqe4+9Fz/AMsYj+mKhNSzDi2PrCo/LIraPwS+RnL4kQ8GnUmPanVlYsSm06kosAlO6UuBRiiwCUhp2DSUBcmgG6G7XuFVx+Bp0GWgvIz2SOcfVGwf0NOsuZinUSRupGO+Mii0wLhEPSQPC3/A1K4qsQv3MZdv0dysK/8AaOTvp96sRRRmV1jDKoOcs5wqgck0s8PlzywqS+xwqnpuzjtUZBGVPUHB+oqw1ynm/aEjxN5odS5DIFCgY2+tYSc1K62t+JvT9k6dpaO618tb2/rUlmsfIkSMMZCbR7hyu3AI6jntUUlleRI0kkeFXaWO5SQG6EgHOKle/Vyh8kLts5bY7cDlwRn6e1Et8rm+PlkfaYoYh833fLI5NckJYlWTXr9/r21PSqxwEuZwbXb7nvda62W63KNT2cxt7q1mBx5cqMfoDzUGRR6/pXo3seG9VY9gtdd0uMNv1SzVQMKFnXcynnBArYXXPBe1d2q6bsmX9+JJMy5x1JArxWLTrmSJZgybHBK8knrjBxUn9nzgrukRF4yc5wO9S7Pdjin0PYJNf8ERujW+s2vmpEyKWLOmwD7pAGKyLzU/CF9a4OrW6zIGkjPlyb1kU7hjivNvseOTcRgdux/KpobFmJ/0iFR3LuF+X1qZcttWVaT2R9D2knnW1pLkHzbeGTI6EsgORU9c/wCEbv7VolmrSB5bTdaykd9n3SPYjFdBUAtgooooGUe5/Cn5xj0pnf8AEUnn24IBmiBAPBkQHGfTNY3RepOvBJzxXPeNbv7LoV0yth5CkaY65bIrVuNU0u0jaWe7gVF67XVj+QNeeeMvE+nakllBpk7SeXIzzNtIXgYA5rOpUSi2jSFNykkcdBY211FAJwWcbtgU8kMckt2q2NB0pF3TrKA3K8gYx+NZ5nl/vt/T9KaZnOAS5H1NcscRKOljueGjIty6PpOTsJ6EgdSSOlVo9KsJN2Bkrweo5qImbMRQuHJYoyk5BFdDYadPHai5nRkMoL5cFQ2Opwa67ynT5kcfLGE7M5LUrWC3SMRqFZnZcg9QorLrV1xv9L8rtEijr3POaya2hdR1MJtOWgtAoIINGaskWlNNzRmgApwpvWlFAD1KgNkEn+HkAA+9JSZpM0AOq1YQR3N3bQybtjsS4T77Kqliq+5xgVCIXMSSght8jRhFyZMqM5wB0pRHcIQ4jmUqQQ2x1we3NS9VZMW5vpYaVJZy6l9g1BIotqfZTJnzWZyu9ZMbsDvxU40bSopZFmW4kR7uxgiCvseMXabsSYHVa58y6iGEjSXYk+6rEyhiD/CCeaaGvQxXNyGZhLjEgYsvR8dcj1rl9jU/n/r+vzMOSX8x0cGnaZImm2zwP/x+6tHLMjYkcW6kgHA+mPp71St7XSpI0uTa3LxXV99jghjl+eBdoO9mxyapTRapatChefdNEl2ojaQkCXI3MBzk85qCNryIOY/tEYIw+zzFXA9ccVUaUmm1P+rv/gfcHK+jOmOnW8SyW2I2KWV5GJii5LC9WMP9QOKa+jaMpvfluGawWRnhjdi1yFUYO4oApz2GeK5vdeBAAbgRkFAAZNpVjuK+mCaHnvlMYeW5Up/q97yLt7fLuNT7Cp/OT7OX8xb1NIEaw8mF4kksopAkvLgs75ye9Z+KlVbi6lRHdy5KrvmL4UHoWJ5ApoilOdqOwDEblRivBxwQK7IWjHlbNl7qs2NGKv2GkanqSTyWcHmRwPbxzNuVQjXDiNAdx7ms/Ndh4OtoZk1N5b2a1/eWKq8NzDErMswcCSOQEn/ZPrWqG9jHXw74hee/to9PnkksJhBd+SA6wydcMynHTmk1Pw9rmkp517aOkBaNFnUhoS0gLBQw78GuzsLa3fU/GXm+I5raC3vWaPdcRxyXUxXC3EjqMEDpwK57xTNqEEyaa+uTapaeXb3jMWVkWZlI58vI47c96r0J1OYpTTc0GkWKehqeQfuLQ+quv5NVfOKty4NjYEdQ84P51tT2l6fqY1HZx9f0ZWo7UZpM1kahRg0UvT/GgAoo44ozQJhS0lLQBNbMUuLdvSRf1OKWXMV1IV/5Zzbhjtg5qHdghvQg1Yv/APj5LAACSOKTjpytdFlKi12f5mN3Gqmu35EdyFFxcBfu+YxH0PzVFUs67DE2eJIY3z6nG01FmuSm/dR11rqpLpqLgYzSHPbvS54pKsyuGOn1/GlIAOQQc/5wQaSlAoA3tGmkEc8BAYKVKDgjDGty20yK7jlblSvIGMjI9BWZ4T02XU7/AOzRnG9fm9No6sfpXq06aJ4esLmASqLqSA4PHmEkbdwA6CspQV22aQqS0jE82OiSnl3VRnHKqDUEmkmLH7yJivZkznNbnnRhlZCWJ+fdnIJz3qwt0r4DRQ4OQxCnvXk1MbQoycJ7o9SGFrVUpQ2Nf4fvLBDe28yhRM/m27Z+/s+Vl+orvBXGWQsba90e4hVY1LGKTBwpaRNu459625fEmiQzSwPM/mRHa+I2K5HBw3StcPj6NaHPey21Oepg6sJcqV3vobFFYo8TaESB5zjOOWjYAZ45q5/bGi/8/wDa/wDf1a6I4ilP4ZL7zGVCrD4ov7jzfW/F99dzpHpbvDaqhMnGJZWI9ewFYSXt+nzpDGGAjGSmWIi+bkn170+01TSo2cPZIWD7gxZsbCq8ECtY+INEPk7bFQqxbH3E/fBy2PY18ria1WUtY3PpsLQpwjp+hmxpqt1E0aQxs0oEUYdVUZVtxP1zWBcGXznjmWFXhJiIhUKuVPPTrXXaz4g0ubQhawQKlz5sSh0BBUeZnII55ri8j15zz9fXmt8JF8rk+pFeSlKzVrCcc05Rx+mabj2/GlIc7AOhPGO/5V2HPfqd0mnaM3h7Tr20kQ3toJJLzJ3b5FwzJg8cVP4j8UaBeabZiO6tGuBGo2xsVMRI5ByKx49StxoC3cenwGKCSe2lVpJAWOUzkA/xd65LUNS0vUJZZG04WqiELDFZv8gkHQtv5x616tFStZq1vxPHrcnM7O9/wMm9lE11cShgQ75BHcYwKr9OalJhJUKjdT1PPFNYqSflP511WOYbRTsp/dNGV7KaAGUU7Kf3f1pwMf8Ac/WiwDcUU/dH/cP50u6H/nn+tO3mK5Gc0CpN0X/PP9aXMX/PP9aLLuF/I3NJ1GytYNPWWUo8N1fyvhWO1ZIAiHgetXbbV4Hnt0kunZW0yytsOGwbsSqWByMZ965jdF/zzH5mjzIv+eQ/M1zSwVObbb/rfsYOmm72Otk1TT7W71EyXslz9ov0IiZGK2oTcpfJ4OM8Y9KpyahZOEtRqKqpt54kuoYJ1EDM6vjLkyEHGDXPiSL/AJ4j8zS+ZF/zwH/fRpxwNNa8+v8AXkSqduj/AAOlbUdJa4ST7a7NHa2MfmyRTYkMLMX+RCPm6YzxUlzrOntLiK6JgeHVhIoRwrNOv7oMCK5jzYuP3C/maPOi/wCfdfzaj+z6P8/9fcL2Xk/wOkj1fTUltbs3t0UEdpE1gsf7uMxrsZmJ+XA6jFZer3FtOIEhuI51R55CUjlTZvI4LSsST+lURPDkEWyce5py3Ef/AD6xfjmtaeDpQlzKevp/wAUXF3UX+BtWmq2cSaazyt58s9t/aDEMdkNoCkf1zwT9Kn03UNJt1tHe6ZGWW6aZHSd/9azEGMKdgB4zxmuf8+P/AJ9ov1pftMY/5dof/HqJYChJNc+/l6/5kuDf2X96Kx+82D/E3PtnrXUeGdd0rR4b5Ly2luGmmtpURVhMW2JsneZBuz6Vz/2pP+fWH/x6nC8XP/HrBj8f612KFP8An/BmvNP+X8TtLbWNDk1HVry78KtdrrM63GlxlY+Io1xIF7c4JOKhuvFPhr+z9Rs7Lw3Haz3lvc2zSoyfJvYFWwRnIrLs9Y05ILCCdrlEDyec8I/eWXUq1offjcK51jlnIJILMQWGC2T1PvWHM7tX0N+VOKbWomKCB1oyaBmqEHarzqP7MtGx0uZlP5AiqVX+ukgd47vP4MtdFH7XoznrO3L6ozzQKOtOAPpWCNxVXJHQepPYetSlokOIxuIP326H6LUfY+v9KKrYl6gx3MTjGecU31p2D17dKTn0pajVkFHp9aKPSiwAasXQyljJ2a3VQfdCVNV++atSfNYWJx9yW4Qt65IYCtYXcZIynpKL8/0GSZa2tW6+W0sJ9gSJF/mahqwjF7W5Q5JjMUqg9gCUP86r4yOhzXLT05l5/nr+p21tVGXdL8NP0AgYHP1HpSGjoaK0OccdpxhcYAB5zk+tKvFN5p4PFUBesdQvNPlE9rPLDIoIDRNtbkY6irjandXZcTzM7SHLSSfMw98msZf0yMnv710kWjqqRyoXcMiyAZUHpnBqZWSuxxveyL+nndboNxcKxXcc8YwcHNX4zz3I9fenaRpGqS20jpatIhcsGX+HHBFWDaXEZdXjKmMZbcQDzxyK+Sx+AqKo6kFe59Hg8ZDkUJaWLccm+xaNgRsJYY6jng5ostC168a5nuTK5k2SxyTY/eDjjPSi1BQSbkbZsYOSMqOO9TQT39nDFcQXFyzTrJCsDAGEIoJV42B/CvHVCdJSdaLS+780ei63PZUJLm+/8i2PDNzFM7xoNmOEOD0IcAZ981d/4R2L/nmn/jtY019ryhGDSOuyESFsLg4JIFR7vEv9yT/v6v8AjXNOUPs3/wDAl/kNwxGl6i+5nDwyaRLbv5qtDdDpwWVwTxyKY4tQGIPAz1I9K9Wl8D+FpHLm2kXgDakrhen1pp8B+EyrBbWQMR8rNLIcHt3r636jKTvc8OOP5Vax5DLeLHIjRxq/JUh+QMjbyPUdqVdM1E7mYKUKZUhgOvIJrT8VeG5dCuEKsjW9w+2Ec7l6cHNRjc8K2axuXjC7pWOUYY6BR3relRUbJfMipXc/fe5kNbXqtjKnHGEYH+VLBNqFnOJEcLIgZD90lQ6lWwG9jWrFpkzK4AOSMdMY9xVmPQ92Yp3EisAWOGUqevJNd6wyaOF4mV7FWye+li+xxIDH/rEQAbPNxjc4PWodUt1t4JWITckR3EIBljx0rvrSXQ9G0aaAwh76XfiUoCVB4X5uvFefatcpc28sYwskkgGWPDYOccVcqfvJoFU91po5YcZPftTacylGIbIIyCDSUzITBpwUgK5PDZAH0ptP3AoE9DkUANpaMUtADeaXmloxmgAANOGaBxS0wEwaDS0DrTAMAdDmjmlpMigBf/rUUmc0ooABkU4UD+lFNEsd1pDRkUVQBgelKAfSgdRyOtKcZYZBweo6GhCEwaTmnUUxiYNOweaBS+1CExMGr0XzabeL/dmjb8CMVSI61ftAGsdUH91Y3/I4rqw/xNeTObEfCn5r8zP2kU4ZpQtGCOtYWOgMkUUYo4oELikx15peD060HGOlACHg44/CkOaDzz6CgZ/yKAAAk9vxq2ozp8qkcwzpJz1w64quA5OBzV61V3h1KMjkwo4z22Guiirtrumc9d2jfs0VrTDSmM9Jo5YufUqSD+eKrgH3qeBZfMR40ZjEySEKCcLnrxRcQTQuPMTZ5m51UkZ257iuG6VRq+rR6TjKVBSs7JvW2lna2vrcgwe9OAopfX8K2OUQjtSgehyehpCaKAJEHP14/wD1V6T4btV1SxtVSNmKO0EhLhcbCCAfwNebqRxxzXqvw0niFrqaO6IIrgOSxUDLoFA5+lF7JsiV7qx3enW0FnbmCEFUSR9wJzhjjPNYWp2Hm3PyJuZiZAy/M21jWtd3mlwRXP8ApcUckyncySIxBxjOGOKz08R6QYkJvYBPFmMiNlO/A6kMOn41ip63Z0ezdrI5a/QQxuueHLRkqc9emcc8VH4UZ7y8GlXjtuggcwEkgbUdSVUHvya0b+/8NT4lW5tEmViX/eYL5bdk8YqvaTaR/aun3lvqFm80VzF8qvteRZsxFVH4/pXPiIQrrlmro1pynSd46M7caZbAr+7U/MScnPXtVv7NB/cH5CpqK5o5fho7QQSrVJbshOSacPr0HNNP3jikkcLHI391ST+ArqWhmeUePL1bjW7G3ODHaAzybjxhcNg1lwa9oaF2YBmJzzkAewwKyfE1413qWs3CkYDCAEehIBrmhU0F7rZc3okehjxLof3/ADMeoVGOPpxVW68TaU42xyNzjdhWB49a4RjyabXRzGdkdLd61HKx2yNtbpknoPasi8uUlSJUYHLM5IB4PQdao8UDFSNu5JuWQBX4YDAf1x2NRMGU4I6cUfSnhww2v24DDr+NPcQyporaeb/VKW+mKiK7SP0rSs8xpGwzk7v51Em0roqCTdmVWtrhPvxkH0NNWCd2CqhLMeAOTXRRXaSHypAucEncPToKqWr6kkwcW7BA5wyoT/wHdWMKzldNWZ0Toxjaz0ZkzW89uwSZCjFQwB9D3piqxYKOSeBW5qsGpX10bj7FKiCKKNBtwMIuM1Uh0zUtyuLSVlUnOBjtW6lF6X1Ofla3KTQTodroQcA4PvT0s7mThEJNX5LfUpbjzJYim3aqhlICge1dZp1m/wBmSaXyYzjOTycj+8DUSqSiloaRpqT3OLk0nU4oJrh4CIYQpkbI+UMcCqIr1bxZBHaeF2aP/l8ntUc8cgAvXlJrVaq5nJWdgNSQwyTtsjGWxnqBwPrUWat2QJeQqDuCZXHbBzQ3ZaCSu7EYtpS5T5dw6j3+tO+yyhioILDjA55/CtyOS3lCiaPDkAhl4PHvVd1uo7gNDGkn93ZjLdvmHWsIYhN8rWp0TwziuZPQz5bK6giSd0IjdzGCeCWxnoeagIPoa6q+0/xHeC3t3tBmLayrgKzl1BGATmqcnh3WY2dJIYUkThlaaPg+ldPNGKvN2Oblbdo6mObV1KhmUFgGGcjg809bKU5wyHHoc/yrWuND1Yuu+NAUUDG9ScEe1aVpossI3TKylByM5PHqKvVLUWhzsWlXMzqiYyzbQWBAz9TVNkKMynqrFeOhxxxXoIS3a2m8pl3RsrqrHnj2rgJh+9nx/wA9HOPTmhO4ONiLvTkUsyrwMkDJ7ZOKTHsegqWJSSr4O1XjDHsCTxVIlnR23hG/uEEizx7CoYNgkYNaVt8PtRuBu+3WyBc7t6t09RiuttrlbHRbSUqo3gIhABI+XJ61yN/4p1JJXjg24QgAyDPX0AqalWNPS2pcKLqa3sWZPhvqMdvLcfbYHWNHf5UIyqqWzzXNaPElxDrEWxy4sZLgBCNu2I854Jr1jR9RV9HspJ0Eslzbl5yeQ5YkEEA9KbHDpMZkNvpmnwtJGYm8uIDdG3VW9jXjSz6lC6Sd/Q7I5XUnuro810Hw5HrlveTG8ED20yRFAobeGUtuBz2rQfwhar+7OothWOT5a5LHj1rvYfsFqpWC0s4ckbhFEoztGMkVmeKXUaRNPGkSTwXEDh40CnDOFIOOxrOnnsaklBRtc0eWyj70jmLfwRBKCx1AgAAcovLH0I4rn9d0hdHvFtlkMytCkm8gLyeowD2rttFurq4doVWMlT8wxgnvnNY/jm2MV7YyFcCW3def9lq96Mm0jz5QirtHFZ7dKTHrTyCT2oP3uBj681qtzG50Wm6BZ31jb3ReXzHaRGRSMAp6ZqWfQNOt1BZ5TzjlttaHhZj9icYbKTyYwMj5lBqvrRmkeAAsMMd4Gc9etc2IlOM9NjpoRhKF5bkVromnTMIysxdmIQIwZjj0ApbDT9dttVa3Swma0uS9gzzwkr5MnG8ZHWpNCdotVsSGIEsksJ55AdSOtegiQodykl1O1SxyBgdhXg4nOKlCfKlc9KnlsKkTi9B8JXgv78X9pdQxqji0mTAXeGOQQT0xjFaLeFFkQS3NiZpwXTJmWPCqxA+Umuo+0ysmS2CMHHUU0ziXhuTg/WvMlnFSVRVVBXSt8juhhakaLw7fuNp280cTDpOgXOFSz2MpKtlyQSDgjmsTxNpMWmyWLQoqRzxE7VO7oTya2ZfOstVvYoG+RbpW244ImAkwAfrU3iyLz9Hs7oD/AFVxj3CuMYavq6FR1acanex4lWmqc5U+x58wxjHNIAT1qU4x0700jnpXfynApXEU44qdLiSMYR3XPXazL0+lQHgUmfapGTvcSPwzOcdMsTTRI46bh9D3qEHPJqRG2/iCPzosiuZsduJAzVmymMNxBKv3oJEmT/eRg4H6VULCnxn5h+HNLlTJcnY+k7O5S7tbW5TG2eGOUY5A3KCRU9cp4CvTd6FFGxy9pNJAf937w/nXV1ztWdi4S5opkB7/AIVn63cfZNK1Sfdgx2spH1xV/uc/hXJeP7wW+iTxgndcYix6g9a5puyNfQ8VvZGMQJOTPM8jHudvArPGetW71h5ojHSJFXH+0Rk1UrWmrRQSd2NIPWinUVZInQ9KQinUUAMpKfjJo20ACnorcr+orYhRFittx+UKW+uaxwOfxFdBD/x7yFlGNgUcdOwqKj0SNae7ZXSMNJ5hyQzZArprW5eFLW0ZNqSQ+ahP953OWP8AKsa1iQDJ6IO/1rRuj/pBwSBFHGqY6IAM4FeNi3zQlc9nCqzVi7IzE4OemOSSenambzs2hsDqV6c1DFPJJlmxkdSOevFWFCgbycngYPUntmvEXNB+Z6jSkjV0qyjuLS6eSNWInAG7J6Lnitew0qxkkna+l8uCAKRHj/WjHTmpvDFn9p06VQpybuVsg44AUVsx2KWtw5lt/OLBQC4BWIE8sc8Yr7DDwToQ9D5qtPlqyRx3xKjgt9J0mGDIjluQyqGydix5GRXk+M16n8U47aH+wYoVVQwupWCnr9xQcV5aRXScTeoytLSdollLdCpBz6YNZ4FaujhPMfcCVzkgDJ4U1M/hZUPiQ6Y7iGDfKDtAH+FaOjIZNQsVPQypuz2Gc1SudvmjapWMkkEjB+lbHh2D7RqNpEBySucdQCeSfyrKMVc6HJ2sjfv76/vLq5eaQ/u5XjiK4XaiNgDiq4jeQl8HP8RPOa0ZLRpJZ2VAFMjnnoRuJHFSxWT/ACbUz2J7Zr4ytUTm9ep9NThyxWnQrWkXmTxI5+XDO5YcBV5OM1sw2gmjmkwpKgEE+/tUUNntnjDq4EsUi9COQwJArsrbTrWGJkChi4wWI7dq+ty1x+rJvqfO452rtI85SPSgrwPbn7V5j/MdwGAc5B6V5rdD9/cDaBiWQcd8Mea9p1TSZbfhWXynZ5DuAz36GvHrtR58+B/y0kwfX5jXqRV0edN2kUcU6PORjoMcdBxSkdOeeeMU9cL9epPtTSJuepXEI/4R/SsA/NGMkc8lRXC3Vsibm3AszKSO4OQOa9IKxt4V0jYfmESs/wBStefXILSTYPTZgfQjNcuJ11R0YXXc7fw8jHSNPOTgebGw7DDkCtTy40Z15DlRgcn3BpnhK3Z9DgZFBIuLpAfT5yc1tCwwdzrkn1r4CtCSm3Y+nji4xXK3sY4QME4XBzz32k9zVTWoN2k6rGRwII2wecFGBHSukFiCSAg46YU9Kj1HT/M03UlVGLtayjAGSSBkYFKjGfOmokVMXTascnoCLHdxuVADeUQe5zjjFN+KEQ/4ksgTGBcJkDAOcGnaUvltYzA/eaND6qQ2Kv8AxLhZ9KspgoIjuAM/xDctfoSldRaPmrayXqePvt3DGeRz7UL1/OhsA0L1HtXbbU5L6HdeCMMuoRbQRuhIznCkhhV/WLQrPgKNzox4xnjkGqnw/wAtc6tGu3L20TbWPdX6rWx4itZrW8tWbJNwVjUnqWZlUVz4o2w3ZnJRrLHJHKAR5VxG5PQjDDmu6fdG+D8wIznPPzfN0rmWt5ll1G28lmkGflVSSCpYHiuthhuPsltLMbf54EJMsyK42ryME5yK+JzClJ1HZban1eEqqME5MiDEjhjnd06DHcfWnDAbOBk7gQeOOmCRV2LTPtUYnikUJjIcurJ065WoYLTz5GhiurYspy6q5Y8cdq832E2k7b7eZ1fWKeuu25yWuRompQyplfNgikZcch4n25yevFaOr2pl8LX0ix5VI1nDDou1uh/OtbxNozC0sJbVVkNktx9qc4V2jkA5x7HFJBE1x4V1mFhjfZSAY+mRivtsvjKnQ9m3qj5bGVFOsqkdmeQKEYDgdMmmOo4xT8NGSR9B9KcSSM5+or21qeVsViBTcVMyHoKFj5HXH6VLiVzEIXilwfSpigH9KTHp9aixdyLGRilXIOOnpTiuT75OacFwDU2Hc9H+Gl6yXd/Ys3E0AmVf9uM4P6GvUq8J8IXTWmv6QysQJLhYHwcfLL8hB9q92rGe46asrFc9TXlnxEvBJe2Npu+WP9447evNeoM2M/T+leMa/bareazdTyWF60JLRrthk5XBG5eK82s/fijshHc4aVzJJI55LOzZ+pqPBzXVDQFOANN1Vj7W8v8AhTh4fkzxo+rEf9e8v+FdSqRMnFnLYJx1pdn+cV1i+H5x/wAwTWG6/wDLvIMfpUo8P3HbQtXOf+neT/CrU0S0cdt449KbtPSu1Ph+4yP+Kf1fH/XvJTv+Efn4/wCKd1fof+XeTmnzINTh8UYrtz4euDkDw1q/t+5ek/4R25P/ADLWsfhC9HMgszi413SRr6so/WuljjuJPs6IQFwdxxnAIxyK0E8O3asrr4c1cFTkZgYjOe9aI07XDgLoepIOOEt2XpUSaZpDzOag0+4jvIpXYmCBxvdgQnPQE9Mmrzo8hnfglSZH65GTiuqs9F8T31ldWf2SWG2MsMssV7iLzWjORsJGfrXM3X2q3+22/lvHAbh1jZhjcV+VgGHUCvLx0W0mtj1cFKPM43J9Msru9l8i2jMjueQvY9OprSuNJ1GyuI7WeBhIw3Bcggj/AHhV3wLFJBeySq7P50ZjI8tsRjcCCCeMmr+t3N3cazH8jolvGkT8EK4DsSeR34rwqsoKEmn734Hqw53WVO2lr+ZuaDdWmm20Gn3EipK0Iu2PACtIcGP8K1ZprC9eKJZjvjkjkIUHDDOQGPpXM3mltetbTqt2jxRBAyQuw253jbis37FryNII7PVNpbcGC4JI6H1r6XBYlypxuradmeBiKMed6mV8VXDanpEXHyWTtx/tP/8AWrzYqa9UvdG1LUJElvNGvriRI1iVpVJIRSSBVM+GZQcDw1dE+u3r+ZruVRdmcMotP/gnm4U1t6HE8hdUI3uSq/XFdePDU4/5lm559hj+dXLPRtVsnL2ugzQsRjO1CPqAe9EpJq1mOCald2+85eTSrsyIm1pANxBZSGJ6nitbwsn9mXl1d3CI3mRMkcJyJAFO0tg84Patv+yvEM80TvYXYcEBWZlUJk9eKm8RWmtWiQ6rcJBLdR/Z7SAW65BVWLjcuMknNceMcpUZKCadjtwyi6sVNpovT63Y2rxJLBF+9QSAIpIUHorcda1I5opIjcwW0T2yMP3mdvGMk7Tz7V5vqjSXmoQMXVGKQkxucKjcEqa9Dmf7VoN3IXiRpIoo28rhFdPQV8hSpQUXzy1s39x7eIpKPLyrdpb9yaO6TVI02xeQIplbePmcKFO7AH5GtS1v7OQeV56maPCuG+Uk9M4rmfC8jIk0fzTNhdoBHVRhsZp17o+oSXUs1tZM6yM8jNLMiYZjnAAOa9/LMTVqU/e116I8rG4eFKrKG3zOmvraO7triNgCWicIe4JHavANTgMVzcKQQVlcYI5FezWkfia1Qqtqh4wN9wGA9+ayJ9A1mZ3kbSrBmYklpJVySeSTxXuwqtbpnlzprdSR46UYYODn8aXYeMj3716z/wAI1r+QV0vShjpmUcfpUi+GvEHT7FpSjOT8+f5LW3t0vsszVOT6r+vkW9Ft0m0jR7UwF2msk8yRidio2SFHbisBPDcsGqT/AG21ee3yWjjG5RKFxjkDpXTW+meMIYkhjuLSKJBhFSWTCjrgACtC00/Wj5x1DUJAQF8g2spwOuS+8VhKXPo46G8YKFmpL8Tm7DVJFe9htt1qsUojEKKAS5O0YWkstf1VdYOn3UspKXAjYMRgZxwcCs+y08yT61emYuLO6lgXPJkdiW3sfSodGlc3673JbzssXkWPIBx90/NXxNdqlVkot6ebPrKUY1qXNZbdvI7bVpr1tSsLG3l8oSwSztJuKrhP4ePWpJb+8t7O1ACySzzpbQ85ZyeM1W8SgCKCQKmfLC7zIykA9him2WnvfWmnzQ3BhlgXaWOJl5GMrnv716VOpKWOlTV/vfkzy3CKwcKktr9i3Z6fPJJK1zDHHD56XC/IEkZ1XGCo7Vm+Obd7vw/dGJWZoriJlUA7jlgvArUGj6phgdauMNknEa9/qarP4Ymfh9YvSPQKn9a+ijzRSSX4nkycW73/AAPFf7K1Jhn7JP7DY2SPUU4aRqueLO4/74NeyjwimRu1fUSPQeWP6VIvhKyHLX+pN/21UfyWuhVpdvxOX2S/m/A4XwJY31rrcRubeSOKSCVNzjAJA3AHNenalp9lqVuYrjaNvzRyAgFGHIINUB4W0sHJuNRJ9Tcf/Y1PH4f06J42WS8bY6uA85KkjpkYrOU5yd2jWEYxW7+7/gnL6vJPaR2g+1wSNvEchjcF5dgJy2OcVQvJ47zT3aCPmMLszyS2ctzXQ+N0tF0xP3cYnaZTGyqA2B15FZN/ZW0Gn2CWqfuWt43UyZc5YBixVepr5HN4xU7+aPp8sqXUU+t/wNjwrFejTJ47iUZLq8aowYpGBnbkVhQGK31m+m80RxXLOxhUN+7wDwueeT/OtvwrKoDxFnLf7ZVRx/cjHasjUx5Opq6oq7Z1BPnsrY3ZzjpXHKs5Uqb6Xkvus0XSpWxFWEt2kzR082EmnW5v7yZZ5NwuYSpZlbupPXFaY1Pw/bwNBFKREylCPLYjB45yK0l0zSZgJms4GeUB2YqCWJHU08aXpI6WVt/37U/zr7OkpKKtZHzVSUZPW7Z43NoMDSyn7fAqNI5X1CkkjvTRoWnjltViHB/h79q9pGn6avSzth/2yT/Cni0sh0trcfSJP8K6faVOjOWVOMnqeJDRdFHL6rz3Cx08aV4fXltRlbr92Jun5V7YLe2HSGIfRF/wp3lQ/wDPNP8AvlaHUm+ovZRR4j/Zvhvp9qu2+kT/APxNL/Zvh7suoP8ASOX/AOJr23y4/wC4v/fIpdqf3V/IVF5dy+SPY8WTTNFP3bDU344/dzdfXpU66RYH7uiak594pOnpya9jwPSil73cOWPY4XRvB+mSx2t81u1u+9ZBFIjiVSjZ5Jau6x/nNFFO3cFFIpE5NPGD1A/Ko+9OXjFZWTNCUAeg/KpBUa9M08CrshMeM0tIM5pasQUUUUAFFFFABRRRQBi+JtQuNM0a+u7cgTKAiFkZwN/y9FrzTxEMR6NCWJKwLvZ3HJZckkrXa+PpANIghIB869tlz8/A8wenH51yHitAt1CzTKgEYVFGN7BR97A6CvDzKX7yC9T2ctWkma3gaICeVyF2rEWBDSfTIzxT5Xkk1afD8GQLtSffkcnlWHSpvBJDw3bxxybUtwu4zg5Y5yQD0osrfzNTnlWcvtkwUfa5x7svFfNYmLVO76t/oj24zXt5y7RR3NoCtvCMY+UVPTIxiNB6AU+vu6EeWlGPkj42TvJsKKKK2JCiiigArnNck8zU9CtGAMebq5YFuCyR4XIHPFdHXOaqu7XdIy+P9EvAPuryV6E/eP0rjxt/YSsdGH/iJnnl6JI9WdlXALddoY4Jxxu4rvLZj/wj82S2QcZ/dkknH4VxesRpbam+X3S8ElxwmT0APNdvZESeHpGLRgYOW2cHGOcV8eqcpNu32ZfkfU4madOFv5kReHVTz5NucZJBYKD78rxXWDvXLeHEXJkUIVJYbk6Zz0Irqa9zIYuOHaff9EeHmzTxLsFFFFfQHlBRRRQAVW1BmWxvmXqLeUjnb/Ce4qzUN2rNa3Sruy0MgG0gHO09CaT2GtGee+HiX03xABz/AKRG5+b1Q5qlpqW8V6ApdpSd2IEVVBJ+6Wl5zVvwlcxrealpcoOb0u8RIBPmQ7sh2HtVC5SQatKgeDBlXYIFaViBxxsHWviMTh5c7fR/ofWYOqkpQt5/ejudcw1hBuEnIX7rorbsd81P4f3C02lXAVyF34zj6isLVdc02Wzjs0E8FzHsRWlgJMbDjoea3/D7SPp1u0kplYfIXKFNxXgnaRXqYaCqY72sHdWX5Hm1ozpYPkmramvRRRX0h4gUUUUAFFFFAHJ+NlY2Fu/OFlIPK45HcHmqCpJdeHtKkQElYGRljBU5RiuM10XiKymvdLuo4T+8QeaFwp3beSMnpXLeHL+M2N9pszKpiBltRuCvKXJ3Iu4gcGvm80w8puSS31XyPawdXlhGS+y/zJPDMrQXnklV5PKIvK8d2Y5NWPEUSm+jLyPErbSS7LGnHpiqGm2F79tmmthFayKzustzOdxJHQL0q0bTxLq8xeaK1niQNFucp5YI9NvNebRpSqUvZpN3d/wsz1akowxDrOSVlZ/odpaZ+zW3Ib90nzDoeOtT1HboYoIIztBSNEOzO3IGPlz2qSvs6ceWKTPkpO7bCiiirJCiiigAooooAKKKKACiiigDO3c/WnqR3zzUGSTmpAc1lct6lhT/ADqQE8VXBxUqk/4U0JkwNOqMHting1dxWFooopiCiiigAooooA5bxrpd9qmkiOyjlluI543WNGABGeSQfTtXLajp9/qAs2FlNFPb28cDre28juWUYLK65TFepYox71yV8LGu027HTQxMqOyuebWkHiLSLPfZyIz3DFXtks5Ay7cjJJGK1fC1nqolmmu7JYVZmZ3YsrFm54Rq7THuaMVyLK6d05Nu2p0zzCc4uNlr16gOlFFFeseaFFFFABRRRQAVzPiTS7y6udFvrK3Ms1nc759jqjtEMHaC1dNRionBTjyy2LhNwfNE4bUdF1LULv7TFaxwhyN3nRBpFHH3iSQfwqS40bxJCiW1rOJoWUM42iOMMe2012uKMV58ssoS1d/vO+OZVYJKKWnkZOi2F3YwFLkW4cnIEC4xnru7flWtRRXdRoxowUIbHDVqSqzc5bsKKKK1MwooooAKDRRQBxs3g68GoSahZ6ikDmd54sxkmNmzkAg9PWrkWg6rHcpdmfTftK9JEt5EJ9yobGa6aiueWHpSd2jeOIqRVkzHGjLNdC7v1tZ5AMBRFhc9j8xNa6qqgAAAAYAAwAPbFLRWsKcYaRRnKcp/EFFFFWQFFFFABRRRQAEAgggEEYIPcGspvD+gOxc2EAJOflBXn1wDWrRSaT3Gm1sZyaJosYwtlCf94Fv5mr0UUMKCOKNI0HRUUKB+Ap9FCilsgcm92FFFFMQUUUUAFFFFABRRRQAUUUUAFFFFAGZgfov8qkUDPT0oorE0eyJVA9BUgAyeB0FFFUiRwAz0FSAD0ooqhMKKKKoQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q==” alt=”” class=”wp-image-136″ >

The Importance of Impedance Matching

Impedance matching is the practice of designing the impedance of the source, transmission line, and load to be equal to the characteristic impedance (Z0) of the system. When impedances are matched, maximum power transfer occurs, and signal reflections are minimized. Mismatched impedances lead to signal reflections, which can cause a variety of issues, such as:

  1. Signal distortion
  2. Reduced signal strength
  3. Increased electromagnetic interference (EMI)
  4. Standing waves
  5. Overshoot and undershoot
  6. Timing errors
  7. Crosstalk

To illustrate the importance of impedance matching, consider the following example:

Component Impedance (Ω)
Source 50
Transmission Line 50
Load 75

In this case, the load impedance (75 Ω) is not matched to the characteristic impedance of the system (50 Ω). As a result, a portion of the signal will be reflected back towards the source, leading to the issues mentioned above.

The reflection coefficient (Γ) quantifies the amount of reflection that occurs due to impedance mismatch. It is calculated using the following formula:

Γ = (ZL – Z0) / (ZL + Z0)

Where:
– ZL is the load impedance
– Z0 is the characteristic impedance

In the given example, the reflection coefficient would be:

Γ = (75 – 50) / (75 + 50) = 0.2

A reflection coefficient of 0.2 means that 20% of the signal power is reflected back towards the source, while the remaining 80% is delivered to the load. This mismatch can lead to significant signal degradation and reduced system performance.

Controlling Impedance in PCB Design

Achieving controlled impedance in PCB design involves careful consideration of various factors, such as:

  1. PCB stack-up
  2. Trace geometry (width, thickness, and spacing)
  3. Dielectric constant of the PCB material
  4. Copper thickness
  5. Proximity to ground or power planes

PCB designers use specialized software tools to calculate and simulate the impedance of traces based on these factors. The goal is to design traces with a specific characteristic impedance that matches the rest of the system.

Some common PCB structures used for controlled impedance include:

Microstrip

Microstrip is a transmission line structure consisting of a conductive trace on one side of a PCB, with a ground plane on the opposite side. The characteristic impedance of a microstrip trace is determined by its width, thickness, and the dielectric constant of the PCB material.

Stripline

Stripline is a transmission line structure that consists of a conductive trace embedded between two ground planes. This configuration provides better shielding and reduces crosstalk compared to microstrip. The characteristic impedance of a stripline trace depends on its width, thickness, the distance between the ground planes, and the dielectric constant of the PCB material.

Coplanar Waveguide

Coplanar waveguide (CPW) is a transmission line structure that consists of a conductive trace with ground planes on either side, all on the same layer of the PCB. CPW offers lower dispersion and better control of characteristic impedance compared to microstrip and stripline.

PCB Manufacturers use specialized techniques to achieve controlled impedance, such as:

  1. Impedance testing: Using time-domain reflectometry (TDR) or other methods to measure the actual impedance of traces and compare them to the target values.

  2. Dielectric materials: Selecting PCB materials with stable dielectric constants and low loss tangents to minimize signal distortion and attenuation.

  3. Precision manufacturing: Employing tight tolerances and process controls to ensure consistent trace geometry and copper thickness.

Applications of Controlled Impedance

Controlled impedance is essential in various applications that involve high-speed digital signals, high-frequency analog signals, or both. Some examples include:

  1. High-speed digital interfaces: USB, PCI Express, HDMI, DisplayPort, etc.

  2. RF and microwave circuits: Antennas, filters, amplifiers, mixers, etc.

  3. High-speed memory interfaces: DDR, GDDR, HBM, etc.

  4. Automotive and aerospace electronics: In-vehicle networks, radar systems, satellite communication, etc.

  5. Medical devices: Imaging systems, patient monitoring, wireless telemetry, etc.

In each of these applications, maintaining signal integrity through controlled impedance is crucial for ensuring reliable operation, minimizing EMI, and meeting performance requirements.

Consequences of Uncontrolled Impedance

Neglecting controlled impedance in high-speed or high-frequency designs can lead to various problems, including:

  1. Signal integrity issues: Reflections, distortion, and attenuation can degrade signal quality and cause bit errors, jitter, and noise.

  2. EMI and electromagnetic compatibility (EMC) problems: Uncontrolled impedance can lead to increased EMI emissions and reduced immunity to external interference, making it difficult to pass regulatory compliance tests.

  3. Reduced system performance: Impedance mismatches can limit the maximum data rate, bandwidth, and operating frequency of the system, hindering its overall performance.

  4. Reliability issues: Signal integrity problems caused by uncontrolled impedance can lead to intermittent failures, glitches, and reduced product lifespan.

  5. Increased development time and cost: Debugging and fixing impedance-related issues can be time-consuming and expensive, especially if discovered late in the design process or during production.

Best Practices for Controlled Impedance Design

To ensure successful controlled impedance design, follow these best practices:

  1. Define impedance requirements early: Specify the target impedance values and tolerances for each part of the system, based on the applicable standards and performance requirements.

  2. Collaborate with PCB fabricators: Work closely with PCB manufacturers to ensure they can meet your impedance requirements and provide guidance on design rules and constraints.

  3. Use accurate models and simulations: Employ high-quality PCB design software with accurate impedance calculation and simulation tools to optimize trace geometry and stack-up.

  4. Follow layout guidelines: Adhere to recommended layout practices, such as maintaining consistent trace width and spacing, avoiding sharp bends, and providing proper grounding and shielding.

  5. Verify impedance: Perform impedance testing on prototype and production PCBs to validate that the actual impedance values match the target values within the specified tolerances.

  6. Document and communicate: Clearly document impedance requirements, design decisions, and test results, and communicate them effectively among the design team, manufacturers, and other stakeholders.

Frequently Asked Questions (FAQ)

  1. What is the difference between impedance and resistance?
  2. Impedance is a complex quantity that includes both resistance and reactance, while resistance is a measure of the opposition to current flow in a DC circuit. Impedance is frequency-dependent and is relevant in AC circuits, especially at high frequencies.

  3. How does impedance mismatch affect signal integrity?

  4. Impedance mismatch causes a portion of the signal to be reflected back towards the source, leading to signal distortion, reduced signal strength, increased EMI, standing waves, and other issues that degrade signal quality and system performance.

  5. What are the most common characteristic impedance values used in PCB design?

  6. Common characteristic impedance values include 50 Ω, 75 Ω, and 100 Ω, depending on the application and the standards followed. For example, 50 Ω is often used in RF and high-speed digital systems, while 75 Ω is common in video and cable applications.

  7. How can I achieve controlled impedance in my PCB design?

  8. To achieve controlled impedance, consider factors such as PCB stack-up, trace geometry, dielectric constant, copper thickness, and proximity to ground or power planes. Use specialized PCB design software to calculate and simulate impedance, and work with PCB manufacturers that can meet your impedance requirements.

  9. What are the consequences of neglecting controlled impedance in high-speed designs?

  10. Neglecting controlled impedance can lead to signal integrity issues, EMI and EMC problems, reduced system performance, reliability issues, and increased development time and cost. It is crucial to address impedance control early in the design process and follow best practices to avoid these consequences.

Conclusion

Controlled impedance is a critical aspect of modern electronic design, particularly in high-speed and high-frequency applications. By carefully managing the impedance of PCB traces, connectors, and cables, designers can ensure optimal signal integrity, minimize reflections and distortions, and achieve reliable system performance. Understanding the principles of impedance, characteristic impedance, and impedance matching is essential for successful controlled impedance design.

Following best practices, such as defining impedance requirements early, collaborating with PCB fabricators, using accurate models and simulations, adhering to layout guidelines, and verifying impedance, can help designers avoid the consequences of uncontrolled impedance and create robust, high-performance electronic systems.

As the demand for faster data rates, higher frequencies, and greater signal integrity continues to grow, the importance of controlled impedance will only increase. By mastering the concepts and techniques discussed in this article, electronic designers can tackle the challenges of controlled impedance and develop innovative, reliable solutions for a wide range of applications.

Leave a Reply

Your email address will not be published. Required fields are marked *